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‘We apply arigorous eigenmode analysis to study the electromagnetic properties of linear and weakly nonlinear

metamaterials. The nonlinear response can be totally described by the linear eigenmodes when weak nonlinearities
are attributed to metamaterials. We use this theory to interpret intrinsic second-harmonic spectroscopy on metallic
metamaterials. Our study indicates that metamaterial eigenmodes play a critical role in optimizing a nonlinear
metamaterial response to the extent that a poorly optimized modal pattern overwhelms the widely recognized

benefits of plasmonic resonant field enhancements.
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I. INTRODUCTION

Metamaterials are artificial composite materials engineered
on a subwavelength scale to enable an optimized combi-
nation of electromagnetic (EM) properties that may not be
readily available in nature (see Ref. 1 and the references
cited therein). Metamaterials are often comprised of periodic
arrays of “meta-atoms,” subwavelength-sized resonators, that
permit multiple theoretical descriptions of their EM prop-
erties. The small size and close packing of the resonators
permits a macroscopic description where the metamaterial
is approximated as a homogeneous medium with effective
constitutive parameters such as permittivity or permeability.>>
Another possible method to analyze metamaterials is multipole
analysis, a microscopic description in which scattered fields
from an individual meta-atom are expressed as an expansion
of multipole contributions.*”” When the meta-atom is thus
described, as a collection of electric dipoles, magnetic dipoles,
and electric quadrupoles for example, then the macroscopic
or effective properties of the metamaterial may also be
determined.

Still another description is frequently employed in metama-
terial research. That is eigenmode (or modal) analysis. Eigen-
modes are the meta-atom’s spatial patterns of current, charge,
and/or near-fields associated with metamaterial resonances.
Eigenmodes are revealed during numerical simulations and
are frequently used to visualize and interpret experimental
measurements. Detailed knowledge of the eigenmodes pro-
vides a description of the EM response at both the microscopic
and macroscopic levels, with more generality than multipolar
analysis. There are various methods for determining EM
eigenmodes and accessing the information they provide.
Rigorous analytic methods exist for finding the eigenmodes
of the simplest meta-atoms, such as cylinders and spheres.®’
Point group theoretical analysis, borrowed from molecular
symmetry studies in spectroscopy, can reveal the character and
existence of eigenmodes based on meta-atom symmetries.'”
Most often, meta-atom complexity requires that eigenmodes,
particularly higher-order modes, be determined by numerical
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EM simulations. These provide the most detailed information
at the usual cost of computational burden.

The utility of modal analysis has been revealed in research
on coherent coupling between neighboring meta-atoms.*!1-16
In these cases, as meta-atoms become closely spaced, their in-
dividual responses experience coupling through either shared
electric or magnetic flux, or both. In a multipole expansion,
the coupled pair could be treated as a single structure, and
this should provide the correct far-field scattering. However,
eigenmode analysis of the isolated meta-atoms quantifies
the exact positions and orientations of polarized charge and
circulating currents within the resonating structures. With this
information it is relatively easy to qualitatively predict both
the sign and onset of mutual coupling as the meta-atoms
become closely spaced. This information is useful in explain-
ing phenomena such as resonance splitting and frequency
shifting.'"'>!15 Thoroughly understanding the metamaterial
analog to electromagnetically induced transparency'’~?” is a
similar eigenmode problem, particularly in determining the
energy transfer between so-called bright, or radiative, and dark,
or nonradiative, modes, > the latter of which have no dipole
moment overlap with the externally exciting plane waves but
are eigenmodes of the meta-atom nonetheless. Generally, cou-
pled resonators and specially shaped asymmetric resonators
enable narrow resonance linewidths, stronger dispersion, and
stronger plasmonic field enhancements. This is particularly
beneficial for linear metamaterial sensing applications,?3~26
and eigenmode analysis is critical to optimization in all such
regards. Finally, recent work in nonlinear metamaterials is
revealing yet another reason for detailed eigenmode analysis:
to properly predict and understand observed nonlinear effects
such as second harmonic generation (SHG).?’-3!

In this paper, we apply a rigorous eigenmode analysis
to study both linear and nonlinear EM properties of meta-
materials. More importantly, we point out that when weak
nonlinearities are attributed to metamaterials, the nonlinear re-
sponse can be totally described by the linear eigenmodes. This
theory is further used to interpret intrinsic second-harmonic
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spectroscopy on metallic metamaterials. Our study suggests
that an enhanced nonlinear response requires optimization of
both the resonance frequency and the modal pattern.

II. MODAL ANALYSIS FOR LINEAR METAMATERIALS

A. General description of the problem

Our initial goal is to find the eigenmodes and corresponding
eigenfrequencies of a metamaterial comprised of periodically
patterned metallic structures fabricated on top of a planar
homogeneous substrate. It is assumed that the substrate has a
permittivity € (w) and is modeled as a semispace located at 7 <
0. The remaining z > 0 space is occupied by a homogeneous
medium, which we will take as vacuum. For convenience, we
assume the whole system is nonmagnetic, u(r,w) = 1.

In order to write Maxwell equations as an eigenvalue
problem, we will assume that the permittivities of the substrate
and metallic parts can be written as
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where €4(r), wo(r), w,(r), and y(r) are constant within each
region. Namely, the permittivity of the metal is described
by a Drude model so that €x(r) =1, wy(r) =0 (effect
of bound electrons is neglected), w,(r) = w, is the metal
plasma frequency, and y(r) =y is the metal relaxation
frequency. Within the (dielectric) substrate, € (I) = €4 1S
the high-frequency permittivity of the dielectric, wy(r) =
o, is the (main) resonant frequency of the dielectric, and
wp(r) = wosc and y(r) = Yosc are the oscillator strength and
oscillator dissipation coefficient, respectively. Finally, for
the vacuum, we have €5 (r) =1 and w,(r) = 0. It should
be noticed that our method can be easily extended to
incorporate permittivities with additional Lorentzian terms
in Eq. (1), which in general are enough to model exper-
imentally measured permittivities of the constituents of a
metamaterial.

In each region, we can define the electric displacement
D(w) = €pe(w)E(w) = €peE(w) + P(w), so that the polar-
ization is given by (&f — @® — iwy)P(®) = €€ E(w).

(o) = ewmy | 1 @ (r) 1 Further introducing the polarization current J(w) = —iwP(w),
€r,w) = €ooll ? — W}(r) + iwy (r) ’ ) th% set of Maxwell equations can be reformulated
as’

|
H ' 0 ;—(’)Vx 0 O. g
E —L_Vx 0 0 —
w = €0€00(T) €0€0o(T) 2)
P 0 0 0 i P
J 0 iepenc®A(r) —io}(®) —iy@®) ) \J

This now has the form of an eigenvalue equation:

ou = Lu, 3)

where u = (H,E,P,])T, and £ is a non-Hermitian differ-
ential operator. As a consequence, the eigenvalues are in
general complex, and the corresponding eigenvectors are not
orthogonal to each other.’*** However, the eigenvectors are
biorthogonal to the eigenvectors of the corresponding adjoint
equation,

al =ul Ll “

From the theory of non-self-adjoint differential equations,
one knows that the eigenvalues and eigenvectors of the two
mutually adjoint equations can be ordered in such a way that
Am = w},,and (u;[nlum/) = 6w (here(...) = fd3r ...).Also,
it is possible to associate the same eigenvalue w,, with one
eigenvector of Eq. (3) and with one eigenvector of the adjoint
Eq. 4), i.e., w, < um,u,L*. In the literature, u,, and u,T,;k are
generally called right and left eigenvectors, respectively.

The set of eigenvalues and eigenvectors contain very
rich physics and highly useful information. In order to get
some physical insight, let us consider first the following
simple case. Assume a bandwidth of frequencies where both
the metal and the substrate possess negligible dissipation,
i.e., y(r) = 0 everywhere. In this case £ is Hermitian, the
eigenvalues are real, and the eigenvectors form a complete and
orthogonal basis.*> Let us further assume that the substrate

is approximately dispersionless in this frequency bandwidth
considered. Then, Maxwell equations can be written as a wave
equation for the electric field as

w? 2
" w
VxVxE+ — f(NE = —€u(DE, )
c c

where f(r) describes the geometry of the metamaterial
[f(r) =1 for r belonging to the metamaterial structure and
zero otherwise], and €y, (r) = 1 4+ (¢, — 1)0(—z) with 6(z)
being the Heaviside step function. This is an eigenvalue
equation of the form OE = @*O,E, with O, » being self-
adjoint operators. As is well known, variational expressions
for eigenvalue problems can be found, both for dissipative and
nondissipative systems. In the dissipationless case at hand, the
variational expression for the eigenvalue is*
» _ (E|OE)

“ T EIOE) ©

Equivalently
- [d&r[1eV x E? + o f(r)[E[?]
B [ dPrequ(r)|E[?

@)

This equation relates the eigenvalues with the corresponding
electric field eigenvector. One way to actually find both of
them independently within this variational method is to find
the stationary points of the r.h.s. of Eq. (7). Indeed, stationary
points correspond to the eigenvalues, and the electric fields
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at the minima correspond to the eigenfunctions. Since the
stationary value for w’ is the corresponding eigenvalue,
the electric field of a mode should be distributed around
the metamaterial in such a way to minimize the numerator
when €4, (r) is positive and nearly constant. This observation is
consistent with what was found in dielectric photonic crystals:
The strongest electric flux is found in the high-e¢ regions
associated with the lowest-frequency eigenmode.*® This is
also frequently observed in planar metamaterial experiments;
a high-dielectric substrate reduces the resonance frequencies
and encompasses most of the electric flux.?

Generally, the eigenvalue problem must be solved numer-
ically and several approaches can be employed, including
variational methods, finite-element methods, finite-different
frequency-domain methods, and finite-difference time-domain
methods (FDTD).?”-*8 In the Appendix we briefly describe the
FDTD method used in this paper.

It should be mentioned that, although the modal method
is described above in the context of metamaterials, one
can directly apply it to isolated or clustered nanoparticles.
Furthermore, when the characteristic sizes of these are
much smaller than the EM wavelength, our method can be
simplified by using a quasistatic approximation.***! More
specifically, the spectral Bergman-Milton theory states that
these electrostatic eigenmodes depend exclusively on the
geometry of the nanoparticle, and the eigenmodes as well as
the corresponding eigenvalues of two-dimensional particles
are invariant under any conformal transformation.*> These
electrostatic eigenmodes can also be applied to study weak
nonlinear or even quantum effects of plasmonic particles.*’

B. Applications
When the metamaterial is illuminated by an external EM
field, Maxwell equations can be written as

oU=LU+S, ®)

where S = (0,0,0,Jex)T and Jex(r, ) represents external
current sources. The total field U can now be expanded in terms
of the eigenvectors u,, of the source-free problem, namely

T
Urw) = Y 2y o, ©

- Wm

m

where w,, = w), + iw)], are the corresponding complex eigen-
values of the source-free problem. A further simplification
occurs when the incident field excites only one single mode,
say the n-th mode; we then have

(u}]S)

w — wy,

U(r,w) ~

u,(r). (10)

The overlap (uilS) in the above equation quantitatively
determines how strongly a general excitation will couple
energy into or out of the single mode of interest. This concept
may be visualized by considering the fundamental eigenmode
of a split-ring resonator, shown in Fig. 1(a) as a map of the
in-plane scalar electric potential. Parenthetically, the strongly
dipolar nature of this mode illustrates why multipolar analysis
can be an effective modeling tool. If the source is a normally-
incident plane wave polarized in the y or z direction, S is
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FIG. 1. (Color online) (a) In-plane scalar electric potential map of
the fundamental eigenmode of a 25 nm thick gold split ring resonator
(SRR) with dimensions indicated by the black scale bar to the right.
Amplitude of in-plane (b) z- and (c) y-components of the electric field.
Lower colorscale applies to (b) and (c). Though not visually obvious
in (c) the y-directed fields within the gap region contribute more than
those outside the SRR, leading to (uf|S) # 0 in the overlap integral.
For the particular eigenmode scaling in (c), this means regions where
E, < 0 cumulatively contribute more than regions where E, > 0.

uniform and (uJ{|S) x [dydz (u{zT ‘Yorx [dydz (ufT -2),
respectively. Here u” stands for the electric field part of the
eigenmode u. The in-plane electric fields, calculated from
the scalar potential, produce an approximate picture of these
integrands and are shown in Figs. 1(b) and 1(c). The figures

are a visual indication that (u]; |S) # 0 for y-polarized waves,

and (uilS) =0 for z-polarized waves. This knowledge is
useful in certain applications, such as metamaterial sensing,

for example. Modes with (ullS) — 0 should have relatively
long decay lifetimes, governed only by dissipative losses.
The resulting narrow frequency response could make such
modes more sensitive to small changes to its local dielectric

environment. Obviously, all ul and S must be considered to
properly utilize this approach.

Equation (10) is also applicable for calculating weak
coupling between neighboring meta-atoms, where S consists
of the near-fields of the neighbors. This information is required
to determine, for example, resonance shifting effects of arrayed
meta-atoms with different periodicities. In strongly coupled
meta-atoms, the eigenmodes themselves are altered, leading
to effects such as resonance splitting!"'>!5 and the metamate-
rial analog to electromagnetically induced transparency.'’->°
However, strongly-coupled meta-atoms may be analyzed as a
single structure to yield a new set of eigenmodes. Equation
(9) would be suitable for determining the response from such
structures having eigenmodes that overlap in frequency.

Equation (10) can also be used to find the multipoles of
one individual meta-atom directly.*® When the characteristic
size of the meta-atom is much smaller than the resonant
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wavelength A, = 2mwc/w),, we can describe the meta-atom
in a multipole expansion, e.g., electric or magnetic dipoles.
Taking the electric dipole as an example, the electric dipole

polarizability tensor IS is given by

s
o B~ (IS f u’ (r)d°r, (11)
w — Wy meta—atom

where E.; is the external electric field, uf is the polarization
part of the eigenvector u, [the third component of the
eigenvector in Eq. (2)], and the integration is performed
over the meta-atom. We can further use the above equation
to find the effective medium parameters (permittivity and
permeability) of a metamaterial membrane formed by these
meta-atoms. For example, let us consider a metamaterial that
consists of an array of such meta-atoms located at positions
R,, which is illuminated by a y-polarized external electric
field propagating along the x direction (normal incidence),

see Fig. 2. We also assume that <o_t> = diag(ayy,ayy,0;;). By
approximating each of the meta-atoms as an ideal electric
dipole, the resulting far-field zero-order reflection coefficient
of the metamaterial is given by**

] 2A
o lorc/24 (12)
1/0tyy — Gy, (0)
Here A is the area of the lattice unit cell, and
Gyy(0) = G).(R,) (13)

n#0

represents the collectively scattered fields at a given dipole
at position R,—o by the other dipoles at positions R, in

<>

the array (g° being the free-space Green function). The zero-
order transmission coefficient is further given by t = 1 +r.
Once we know the reflected and transmitted coefficients, the
effective permittivity and permeability of the metamaterial
can be extracted by treating the metamaterial membrane as a
homogeneous slab with identical thickness.? Since the dipole
polarizability of one single meta-atom varies rapidly around
one resonance, we expect that the effective parameters of
the corresponding metamaterial possess similar frequency
dependence. One example is shown in Fig. 2, where the
transmission spectrum of an array of gold cuboids is studied
numerically and analytically, and reasonable agreement is
observed.

III. WEAK NONLINEARITIES OF METAMATERIALS

While the linear applications of eigenmode analysis are
familiar in the literature, there remains much to explore in the
nonlinear realm. Nonlinear effects in metamaterials produce
rich phenomena such as wave mixing and field modulation,
that need to be understood at the microscopic level. When the
nonlinearity is weak, the polarization P can be expanded in a
power series of the electric field, as is usually done in nonlinear
optics®

() PN
P(r,t)/eo=x E@rt)+ x E@,t)-Er)+...,
(14)
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FIG. 2. (Color online) Transmission spectra of a 2D array of
cuboids in a square lattice. The incident plane wave is y-polarized and
propagates along the x direction (normal incidence). The dimensions
of each cuboid are shown in the inset (all in nanometers), and
the lattice constant is 320 nm. The corresponding polarizability
of an isolated cuboid «y, = 47'reof/(a)§ —w? —iwt) with Ay =
656 nm, f/wy = 6.5 x 1077 and t/w, = 0.21. The results obtained
from the analytical discrete-dipole approximations (solid) agree
reasonably well with those obtained from full numerical simulations
(dotted).

<), . o <@ .
where x  is the linear susceptibility tensor, x  is the
second-order nonlinear susceptibility tensor, etc. One can
solve Maxwell equations perturbatively by also expanding the
EM fields and currents to different orders in the nonlinearities,
e.g. E(r,t) =Y, E®(r,1).* For example, for higher-order
harmonic generation the different orders can be generally
expressed as

U™ = U™ 4 8™, (15)

Note that without the source term S the above equation
is identical to the general eigenvalue equation for the linear
case (3). In other words, within perturbation theory nonlinear
fields share the same set of eigenmodes as the linear fields.
Consequently, the n-th order nonlinear field can be expanded
in terms of these eigenvectors

Q)
UP(rw)=)" %um(r). (16)

m

More importantly, since the nonlinear source S™ can usu-
ally be expressed as a function of lower order fields, for

example ()?W(E(”)”, we can calculate them recursively by
using these eigenvectors exclusively.*’ This method can be
very efficient under certain circumstances. Like its linear
counterpart Eq. (10), Eq. (16) is especially useful when
only one mode dominates and its position dependence and
frequency dependence can be totally separated.

As an example, let us consider a tiny particle, such as a
metallic nanoparticle, embedded within a much larger dipole
antenna that is illuminated by an EM wave with frequency
. We assume that the linear permittivity of the particle is
close to that of the surrounding medium, so that it does not
alter the eigenmodes of the antenna. It is further assumed

. . e (3)
that the particle possesses a third-order susceptibility 7 ,and
that one of the antenna eigenmodes u, has an eigenfrequency
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w, = w, + iw, whose real part is almost equal to 3w. The
resulting third-harmonic field is given by

UOr30) ~ = @SYmsr —rou, . (17)
where r is the location of the nonlinear particle. The above
equation suggests that the spatial dependence of the third-
harmonic signal is totally described by the eigenmode of the
antenna. Note that the nonlinear source S®(r) contains the
information of the fundamental field UV, If we assume that
U™ does not depend substantially onr, then S®® is not sensitive
to the location of the particle. Hence

U9(r,3w) o [uf (ro)* - ¥ Tu,,(r). (18)

Therefore, similarly to the Purcell effect,*® maximal third-

harmonic intensity can be achieved by putting the nonlinear
particle at the position of maximum local field enhancement
in the 3w eigenmode.

It should be mentioned that in the microwave region,
lumped nonlinear insertions such as diodes are employed to
achieve nonlinear metamaterials.***!** For example, tunable
transmission and harmonic generation were observed in
varactor-diode-based metamaterials.?! As long as the nonlin-
earity is weak, the modal analysis method developed here is
general enough to describe these nonlinear metamaterials as
well. One challenge in this case is properly describing the
electromagnetic behavior of the nonlinear insertion in terms
of full-vector electric and magnetic fields, instead of the circuit
quantities by which they are typically specified, such as scalar
current and voltage. Fortunately, there are multiple methods
to address or work around this challenge, some of which are
already published.?’

IV. FREQUENCY-DEPENDENCY OF INTRINSIC SHG IN
METALLIC METAMATERIALS

We now use the above theory to study SHG in metama-
terials. Recently several experimental and theoretical efforts
have been carried out in this field.>”*57 One of the latest
experiments is reported in Ref. 58, where SHG spectroscopy
on 2D arrays of gold split-ring resonators (SRR) was studied.
It was found that when the frequency of the incident EM
field is close to the fundamental plasmonic resonance of the
metamaterial, the frequency dependence of the SHG signal
can be nearly described by a Lorentzian shaped curve. Surpris-
ingly, illumination at the eigenfrequency of the fundamental
plasmonic mode does not result in the maximal SH signal, even
though this mode provides strong local field enhancement.

In the following we explain these observations by applying
our modal approach to a structure similar to that of Ref. 58.
We consider an array of gold SRRs arranged in a square lattice
in the yz plane (one unit cell is depicted in the inset of Fig. 3).
The incident plane wave is y-polarized and propagates along
the x direction (normal incidence). Furthermore, both the
fundamental and the SH wavelengths are much bigger than
the lattice constant, so that no diffracted waves are allowed
in the far zone. Consequently, only the eigenvectors with zero
Bloch wave vector contribute to the linear and nonlinear fields.
Moreover, because the structure possesses a y = 0 mirror
symmetry, the eigenmodes can be divided into two groups
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FIG. 3. (Color online) Reflection spectra of a 2D split-ring-
resonator array with lattice constant of 305 nm. The incident plane
wave propagates along the x direction and may be y-polarized (black)
or z-polarized (red). The first-order odd mode (1,0) can be excited by
the y-polarized incident field, and the first and second even modes,
(1,e) and (2,e), can be excited by the z-polarized incident field.
The inset shows a unit cell of the 2D array and its corresponding
geometrical dimensions (the thickness of the SRR is 25 nm). All the
dimensions are in nanometers.

in terms of the z component of the electric field. It can be even
such that

E.(x,y,z2) = E.(x, — y,2), E,(x,y,2) = —E,(x, — y,2),
or be odd so that
Ez(-xayaz) = _Ez(xv - y,Z), Ey(X,Y»Z) = Ey(-xv - y’Z)'

Note that E, shares the same symmetry properties as E,. To
simplify our notation, we use w,; and u,;, with i = o,e, to
denote these eigenvalues as well as eigenvectors. Moreover,
we have the following orthogonal relations

(Wl i) = 88iir, (19)

i.e., two eigenvectors with different symmetry are orthogonal.

For simplicity, we assume that the gold permittivity is
described by a Drude model, Eq. (1), with plasma frequency
w, = 1.367 x 10'%s~" and the phenomenological collision
frequency y = 6.478 x 10'3s~! 46 Using the FDTD method,
the linear spectra of the free-standing SRR array is calculated
and the results are plotted in Fig. 3. Notice that the y-polarized
incident EM field (solid black line) excites the odd eigenmodes
exclusively, while the even eigenmodes can only be excited
by z-polarized illumination. The real part of the eigenvalues
can be identified from the peaks of the reflection spectra (see
the Appendix), while the imaginary part can be obtained by
fitting the spectra with a Lorentzian form (see below). We
find that the fundamental odd mode has a resonant frequency
of w1, = (14 0.173i)wy, with wy = 1.547 x 10"s~!, and
the two lowest-order even eigenmodes have eigenvalues
w1 = (1.74 4+ 0.644i)wy and wp, = (2.93 4+ 0.069i)wy, re-
spectively. Note that the (2,e) mode has a damping loss much
smaller than that of the (1,e) mode, a phenomenon that has
been observed numerically in Ref. 59.
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As in Ref. 58 we choose the incident frequency quite
close to wy. Consequently only the lowest-order odd mode
contributes significantly to the linear fields, i.e.,

(u} 18D

UV w,r) ~ uy(r). (20)

1,0

Because of the structural symmetry, only z-polarized SH
far-field signals are allowed. In other words, only the even
eigenmodes contribute to the second-order fields

T ®)
m,e S
U(2)(2w,r) — 2 M

Uy, (). (2D
20 — e

Within perturbation theory the nonlinear source S can be
connected with the linear field U as
(ul,,I8M) 77

EEE— Xul,oul,m (22)

w — (,()1,,,

S@ — yuLu® ~ |:

where X is an operator whose form is determined by
the particular form of the nonlinearity, and can encompass
different nonlinear mechanisms presented in Refs. 46, 53, 57,
and 60. For example, for the hydrodynamic model (see below)
X is a differential operator given by the last three terms of
Eq. (26).

Inserting the above equation in (21), we obtain the second-
order field

2) ~ Um.e
U (zw’r) ~ Z (20) - a)m,e)(a) - 61)1’0)2

W o(r), (23)

m

where
e = (ul IS (ul, | Xuyoup,). (24)

It is interesting to notice that when only the (n,e) mode dom-
inates U®, and «,, , is frequency-independent, the frequency
dependence of the SH intensity can be simply described
by

1 2

(2('0 - a)n,e)(w - 0)1’0)2

(25)

This expression will result in a Lorentzian shaped curve,
similar to the experimental observations.’®%! Additionally, for
w, /2 < @ ,, the maximal SH intensity is generated when
the fundamental illumination is red shifted from “),1,0’ and for
w, /2 > | ,, the maximum SH intensity is generated when
the fundamental is blue shifted from w; ,. Furthermore, the
damping losses of these two eigenmodes, especially the (1,0)
mode, affect the peak location strongly. As an example, by
choosing either the (1,e) and (2,e) as dominant, we can plot the
resulting frequency dependence of the SH intensity, as shown
in Fig. 4. These two modes give similar Lorentzian shaped
curves, but the SH intensity as a function of illumination
frequency peaks at different sides of wy.

To determine which even mode dominates the SH pro-
cess, we must estimate the overlap coefficients «,, ., or
more precisely the overlap between the even mode and
the nonlinear source, i.e., (uIn,e|Xu1,,,u1,0). This requires a
full understanding of the SH mechanism.*637:%0 Before
discussing these results we note that there are general features
of SHG from metallic nanostructures that indicate which
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FIG. 4. (Color online) The frequency dependence of the SH
intensity from the 2D SRR array of Fig. 3, as obtained from
the single-mode approximation Eq. (25), as well as the results of
a full-wave numerical simulation (dotted) based on the classical
hydrodynamic model described by Eq. (26).

mode will dominate. Because of the centrosymmetry of
metal, the electric dipole approximation suggests that the SH
polarization is strongly localized near the metallic surfaces
and corners.* This approximation is reasonable, as supported
by experimental®® as well as numerical observations.’* An
even mode with field enhanced near these hot spots should
therefore lead to a strong overlap with the SH source. In Fig. 5
we plot the near field distributions of the (1,0) mode as well
as the first two even modes. Notice that the (2,e) mode is
strongly localized around the corners. [Our (2,e) mode pattern
deviates considerably from the one in Ref. 59 mainly because
our structure has a very wide metallic bottom.] Moreover, as
suggested by Eq. (7) and confirmed by Fig. 5, the (2,e) mode
has a higher degree of field enhancement inside the metal than
the (1,e) mode. Therefore it is likely that the (1,e) mode does
not dominate the second-order process, despite the fact that its
frequency is very close to 2a ,.

To support the discussion above, we numerically calculate
the SH spectroscopy of the SRR array by using the classical
hydrodynamic model developed in Ref. 46. Within this model,
charge transport inside the metal is described as a classical
fluid characterized by the electron number density n(r,7) and
the electron velocity field v(r,?). The dynamics of this fluid
under the influence of Lorentz forces in the presence of an
external EM wave is self-consistently described by Maxwell
equations coupled with the electronic current density j(r,t) =
en(r,t)v(r,t) (here e is the electron charge). The second-order
current density satisfies*®

aj(z) 2) 62”0 ad j(l)j(l)
WT _ o MR 9 k
at vit m, + ; arg eny

— L le(V-EMED + 0 x BDL (26)
m,

Here ng is the background ionic density, m, is the electron
mass, the subscripts & denote Cartesian coordinates, and the
term —yj® corresponds to current damping. Numerically
it is found that the leading source of nonlinearity is the
third term in Eq. (26).>! This model was shown not only to
provide qualitative agreement with experiments but also to
reproduce the overall strength of the experimentally observed
SH signals.*®
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FIG. 5. (Color online) (a) Near field distributions of the three
lowest eigenmodes for the 2D SRR array shown in Fig. 3. (b) The z
component of the SH current is obtained by using the hydrodynamic
model.

The numerical simulation for the SRR array of Fig. 3
is depicted as the dotted curve in Fig. 4. This is visually
verified in Fig. 5 which shows that the calculated SH current
exhibits a much stronger overlap with the (2,e) mode than
with the (1,e) mode. Remarkably, the (1,e) mode shows
pronounced nulls precisely where SH current is maximized,
indicating a very poor ability to radiate SH signal. We find
that our simulation reasonably agrees with the (2,e) mode
approximation, implying that the (2,e) mode significantly
contributes to the SH signal. We also considered two ad-
ditional structures: an SRR array deposited on top of a
semi-infinite glass substrate, and a free-standing array with
slight asymmetry (by increasing one metallic arm width from
60 nm to 80 nm). In both these cases we obtained results
similar to the ones in Fig. 4 (a symmetric free-standing
SRR array). Specifically, for the first structure, the maximal
SHG appears around 1.05w), with wy = 1.25 x 10>s~! being
the frequency of the fundamental odd mode; for the second
one, the maximal SHG appears around 1.06w;, with o =
1.57 x 10"s~!. We conclude that the modal pattern affects
SHG considerably, as suggested by Eq. (24). As in the linear
case, this example shows that maximal SH radiation occurs
when there is strong overlap between a meta-atom eigenmode
and the source field. The key implication of our analysis
is that, in order to achieve optimized nonlinear effects, one
needs to pay attention not only to field enhancements but also
to modal pattern. Whereas the field enhancement determines
the strength of the nonlinear conversion, the modal pattern
determines how well the nonlinear fields are radiated from the
metamaterial.

We mention that the experimental observations in Ref. 58
are more similar to the (1,e) mode approximation in Fig. 4.
In other words, the (1,e) mode dominates in the experimental
SH signals. One possible origin of this discrepancy between
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the experiment and our simulation are imperfections in the
experimental sample (such as fabrication distortions that cause
meta-atoms to be nonidentical) that might impact the (2,e)
mode more strongly. The loss in this mode becomes so great
that its contribution to SHG is almost negligible. Interestingly,
another similar experiment using a slightly different sample
observed two peaks’ SH signals on both sides of wy.°!

V. CONCLUSIONS

In this work a rigorous eigenmode analysis is developed
to study linear and nonlinear electromagnetic properties of
metamaterials. The utility of eigenmode analysis is discussed
for its ability to describe and visualize metamaterial behaviors
such as scattering, inter-resonator coupling, and plasmonic
field enhancement, all of which underpin metamaterial appli-
cations. A general mathematical description of the eigenmode
problem is provided and quantitatively linked to recent
theoretical and applied research topics such as multipolar
analysis and metamaterial sensing. The formulation is then
shown to apply equally well to weak nonlinear phenomena,
reproducing the frequency dependence observed in SHG in
metallic metamaterials, without regard to the form of the
actual nonlinear mechanism. More importantly, using modal
analysis and a classical hydrodynamic model of the nonlinear
mechanism, it is established that the modal pattern can play
an equal or greater role than plasmonic field enhancement in
optimizing macroscopic nonlinear metamaterial behavior. In
conclusion, this work visually and mathematically illustrates
that the understanding and optimization of metamaterial eigen-
modes is essential for improving metamaterial performance,
particularly as multiple resonant frequencies become involved,
as in recent nonlinear work.

ACKNOWLEDGMENTS

The authors wish to thank Weili Zhang for carefully reading
this manuscript. We acknowledge support from the LANL
LDRD program. This work was carried out under the auspices
of the National Nuclear Security Administration of the US
Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396.

APPENDIX: FINDING EIGENMODES USING
THE FDTD METHOD

One popular approach to calculate eigenmodes is based on
the FDTD method.?” To interpret this approach, we start from

Eq. (8),
oU=LU+S8,

with S representing specific external excitations.’” Corre-
spondingly, the adjoint equation is given by AUT = U LT 4 ST,
Let us now split U = Uj,q + Uy, where Uy is the solution to
wUy = LyUy + S, where L is the operator for the case when
the metamaterial is absent (i.e., only the vacuum-substrate
interface is considered). By subtracting it from Eq. (8) we
arrive at

@Uing — LUjpg = (£ — Lo)Up. (A1)
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We now expand Uj,g in terms of the source-free right-
eigenvectors u,, of Eq. (3),

Uina(r,0) = Y ctp (@) (1), (A2)
where the expansion coefficients can be obtained by projecting
onto the left eigenvectors o,,(w) = (u,,|Ujng). Substituting it
into Eq. (A1) and further projecting onto the left eigenvectors,
we obtain

1
———(u, |(£ — Lo)[Uy),

- Wm

(W) = (A3)
where the complex frequency w, can be written in terms
of its real and imaginary parts, namely w,, = o), +iw),.
Assuming the inner product (u,Tn (L — Ly)|Up) is a nonzero,
slowly-varying function of frequency around w),, we can
approximate Uijpq(r,w) in a narrow region centered at o),
as

1 4
Uina(r,o) ® ——(u,, [(£ — Lo)[Up) un(r).  (A4)

- Wm

Consequently the frequency-dependency of Uiyq in this region
can be fitted by a Lorentz formula

/ LN
w—w, +iw,

— 7 A5
(0 — )+ o? (A5)

More specifically, we know that
Uina(@)|* o (A6)

(0 — )2+ w?’
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resembles a Lorentzian shape. Its peak appears at ), and o),
can be obtained by using

Aw

A |z_1’
Ui(Aw+tw),)

"
w,, =

(A7)

where Aw represents a tiny frequency shift from w),. As a
result, by fitting the frequency-dependency of Uj,q with a
Lorentz formula we can obtain the real and imaginary parts of
the complex eigenvalue w,,.

All of these considerations simply show that the complex
eigenfrequencies can be obtained by doing a modal analysis
in the frequency-domain and looking at the positions where
the mode response is peaked in frequency. We now describe
how to find the complex eigenfrequencies and eigenfunctions
using the FDTD approach. In FDTD one assumes a few
random currents, usually point sources with a §(f — fy) time
dependency or narrow Gaussian pulses, located close to the
metamaterial structure. The radiation of the current sources
are supposed to excite all the eigenvectors of the system. The
evolution of polarization currents J(r,7) at a few positions
inside the structure are then recorded. Fourier transforming
these signals, one obtains their frequency dependence J(r,w).
The maxima of the current amplitude |J(r,w)| indicate the
locations of the real parts of the eigenfrequencies, w),. Then,
w;, can be found by using Eq. (A7). Note that these eigenvalues
do not depend on the excitations nor on the observation
locations we chose. Once the complex eigenfrequencies are
determined, the corresponding eigenvectors can be found by
choosing a time-harmonic current source oscillating at ), and
finding the resulting eigenvector u,,.
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